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Abstract. The increasing precision of many experiments in elementary particle physics leads to continuing
interest in perturbative higher order calculations in the electroweak Standard Model or extensions of
it. Such calculations are of increasing complexity because more loops and/or more legs are considered.
Correspondingly efficient computational methods are mandatory for many calculations. One problem which
affects the feasibility of higher order calculations is the problem with γ5 in dimensional regularization. Since
the subject thirty years after its invention is still controversial I advocate here some ideas which seem not
to be common knowledge but might shed some new light on the problem. I present arguments in favor of
utilizing an anticommuting γ5 and a simple 4–dimensional treatment of the hard anomalies.

1 Introduction

The electroweak Standard Model (SM) [1] has been ex-
tremely successful in the interpretation of LEP/SLC data
and higher order effects typically amount to 10 σ devia-
tions if not taken into account [2]. These precise predic-
tions are only possible due to the renormalizability [3] of
the SM and the by now very precise knowledge of the rel-
evant input parameters. Last but not least the relevant
coupling constants are small enough such that perturba-
tion theory mostly works very well.

The formal proofs of renormalizability of the SM [4]
often relied on the assumption that a gauge invariant reg-
ularization exists. The question whether such a regular-
ization exists is non–trivial because of the chiral structure
of the fermions involved. At present the only regulariza-
tion, which makes elaborate computations of radiative cor-
rections feasible, is the dimensional regularization (DR)
scheme [5,6] which is well-defined for field theories with
vectorial gauge symmetries only. However, in theories ex-
hibiting chiral fermions, like the electroweak SM, problems
with the continuation of the Dirac matrix γ5 to dimen-
sions D �= 4 remain open within this context and several
modifications of the ’t Hooft–Veltman DR have been pro-
posed [7–15]. It turns out that starting from the standard
SM-Lagrangian and using a γ5, which does not anticom-
mute with the other Dirac matrices γµ, leads to “spuri-
ous anomalies” which violate chiral symmetry and hence
gauge invariance. These anomalies would spoil renormal-
izability if we would not get rid of them by imposing
“by hand” the relevant Ward-Takahashi (WT) [16] and
Slavnov-Taylor (ST) [17,18] identities order by order in
perturbation theory [13,19–22]. At first sight this might
not look to be a serious problem, however, violating the
symmetries of the SM makes practical calculations much
more difficult and tedious than they are anyway.

The problems of course are related to the existence of
the Adler–Bell–Jackiw (ABJ) anomaly [23], which must
cancel in the SM in order not to spoil its renormalizability
[24].

Surprisingly, the prescriptions proposed and/or used
by many authors continue to be controversial [9,11,13,15,
20,25–32], and hence it seems to be necessary to recon-
sider the problem once again. We shall emphasize, in par-
ticular, the advantage of working with chiral fields. The
consequences of working as closely as possible with chiral
fields, it seems to me, has not been stressed sufficiently in
the literature so far.

As a matter of principle it is important to mention two
other approaches which both work in D = 4 dimensions.
i) In quantum field theories on the lattice a recent break-
through was the discovery of exact chiral invariance on
the lattice [33] which circumvents the Nielsen–Ninomiya
no–go theorem [34]. A well defined regularization which
preserves simultaneously chiral–and gauge–symmetries is
thus known and could be applied to the SM. ii) The alge-
braic renormalization of the electroweak SM to all orders
[35] within the Bogoliubov-Parasiuk-Hepp-Zimmermann
(BPHZ) framework is a mathematically well defined
scheme, which is much more involved because it breaks
the symmetries at intermediate stages and hence leads to
much longer expressions which are extremely tedious to
handle in practice. In cases of doubt this is the only known
scheme which is free of ambiguities and works directly in
4–dimensional continuum field theory. For a detailed dis-
cussion of practical aspects of algebraic renormalization
we refer to [36] and references therein.

For perturbative calculations in the continuum we have
to stick as much as possible to the more practical route of
dimensional regularization. In the following tensor quan-
tities in D = 4 dimensions are supposed to be defined by
interpolation of D = 2n (n ≥ 2, integer) dimensions to
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dimensions below D = 4. It is well known that the γ–
algebra, the so called “naive dimensional regularization”
(NDR)1

{γµ, γν} = 2gµν · 1 , gµ
µ = D , AC(µ) ≡ {γµ, γ5} = 0

(1)
for dimensions of space–time D = 4 − 2ε, ε �= 0 is incon-
sistent with

Tr (γµγνγργσγ5) �= 0 . (2)

The latter condition is often considered to be necessary,
however, for an acceptable regularization since at D = 4
we must find

Tr (γµγνγργσγ5) = 4iεµνρσ . (3)

Generally, for γ5 odd traces one obtains trace conditions
from the cyclic property of traces. They are not fulfilled
automatically, as we shall see, and hence the algebra is ill-

defined in general. Considering Tr

(
4∏

j=0
γµjγ5γ

α

)
cyclic-

ity requires

Tr


 4∏

j=0

γµj AC(α)




−2
4∑

i=0

(−1)igαµiTr


 4∏

j=0, j �=i

γµjγ5


 = 0 . (4)

Contraction with the metric tensor gαµ0 yields

2(gα
α−4)Tr


 4∏

j=1

γµjγ5


+Tr


 4∏

j=1

γµj AC(γ)


 = 0 (5)

with AC(γ) ≡ γαAC(α). Thus gα
α = D �= 4 together with

(2) implies AC(µ) �= 0. However, non-anti-commutativity
of γ5 is in conflict with the chiral structure and hence with
gauge invariance of the SM, in general. It is the purpose
of this note to study the possibility of restoring gauge
invariance by employing chiral fields systematically.

Before doing so, let me point out that the above purely
algebraic argumentation is to naive if fact. Kinematic ten-
sors, like the γ5–odd traces, occur as factors of singular
amplitudes and the isolated consideration of the individ-
ual factor is more than problematic. In other words, we
must ask whether

ε Tr


 4∏

j=1

γµjγ5


 × 1

ε
= Tr


 4∏

j=1

γµjγ5


 or

= 0 × 1
ε

= 0 ?

Of course, what is the correct answer to the question we
learn by imposing the appropriate WT identities.

1 I read it as “normal dimensional regularization”

2 Formally gauge invariant Feynman rules

Obviously only terms involving γµ in the standard SM
Lagrangian can be affected by a non–anticommuting γ5.
As an example we consider the leptonic part, given by

L	 = �̄Riγµ (∂µ + ig′Bµ)�R + ν̄	Riγµ∂µν	R

+ L̄	iγ
µ (∂µ + i

g′

2
Bµ − ig τa

2
Wµa) L	 (6)

using standard notation. As usual the chiral fields

�R = Π+� , ν	R = Π+ν	 , L	 =

(
ν

�

)
L

= Π−

(
ν

�

)
(7)

may be represented in terms of the lepton fields �(x) and
the neutrino field ν	(x) with the help of the chiral projec-
tors

Π± ≡ 1
2

(1 ± γ5) . (8)

In order that Π± are Hermitean projection operators γ5
must have the properties

γ2
5 = 1 , γ+

5 = γ5 . (9)

Furthermore, we demand Π± to be chiral projectors also
for the adjoint ψ̄ = ψ+γ0 of a Dirac field ψ. This implies

{γ0, γ5} = 0 . (10)

By Lorentz covariance in the 4–dimensional physical sub-
space the latter condition extends to

{γµ, γ5} = 0 for µ = 0, 1, 2, 3 . (11)

It is easy to verify that L	 is invariant under local SU(2)L
⊗U(1)Y gauge transformations, irrespective of AC(µ) �=
0. Since the chiral fields have the simple transformation
properties

L	 → exp{−i/2 (g′β − gτaωa)Π−}L	

= exp{−i/2 (g′β − gτaωa)}L	

�R → exp{−ig′βΠ+}�R = exp{−ig′β}�R
νR → νR , (12)

the invariance of L	 follows immediately from the proper-
ties of Π± alone.

We notice that in utilizing chiral fields there seems to
be no conflict with the non–anti-commutativity of γ5 and
the formal validity of the ST–identities.

Usually, one prefers to write Feynman rules in terms
of the Dirac fields � and ν	. The standard Feynman rules
are obtained using the relations

ψ̄Π∓γµΠ±ψ = ψ̄γµΠ±ψ , (13)

which are valid only, provided AC(µ) = 0.
If AC(µ) �= 0 in D �= 4 dimensional space–time, the

above relations no longer hold and hence the standard
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Feynman rules manifestly violate gauge invariance. The
correct relations, replacing (13), read

ψ̄Π∓γµΠ±ψ =
1
2
ψ̄ (Γµ ± Γµ

5 ) ψ , (14)

with

Γµ ≡ γµ − 1
2

AC(µ)γ5 =
1
2

(γµ − γ5γµγ5) (15)

and
Γµ

5 =
1
2

[γµ, γ5] = Γµγ5 . (16)

We notice that by definition all Γ ’s are anticommuting
with γ5

{Γµ, γ5} ≡ 0 . (17)

According to (14) the proper expressions for the vector
current and for the axial–vector current read

V µ(x) = ψ̄Γµψ = ψ̄γµψ − 1
2
ψ̄AC(µ)γ5ψ (18)

and

Aµ(x) = ψ̄Γµγ5ψ = ψ̄γµγ5ψ − 1
2
ψ̄AC(µ)ψ , (19)

respectively. It might be worthwhile to point out that the
standard form of the axial current ψ̄γµγ5ψ is not Her-
mitean when AC(µ) �= 0. The above consideration also
shows how anomalies may come about in the vector cur-
rent when γ5γµγ5 �= −γµ.

The fermion kinetic term changes to

ψ̄iΓµ∂µψ = ψ̄iγµ∂µψ − 1
2
ψ̄iAC(µ)γ5∂µψ . (20)

Correspondingly, the free massless fermion fields must sat-
isfy the field equation(

γµ − 1
2

AC(µ)γ5

)
∂µψ = 0 . (21)

This formally implies that the conserved canonical
Noether currents are precisely the ones given above.

By the field equation the fermion spinors satisfy(
k/− 1

2
AC(k)γ5 −m

)
u(k, s) = 0(

k/− 1
2

AC(k)γ5 +m
)
v(k, s) = 0 (22)

and the free fermion propagator reads (AC(k) ≡
kµAC(µ))

SF (k) =
1

k/− 1
2AC(k)γ5 −m+ i0

=
k/− 1

2AC(k)γ5 +m
K2 −m2 + i0

(23)
with

K2 ≡ k2 − 1
4

AC(k)AC(k) . (24)

Formally, we have obtained chiral and gauge invariant
Feynman rules for non-anticommuting γ5. Equations (18),
(19) and (23) replace the standard expressions valid for
AC(µ) = 0.

3 Non-existence of a chirally invariant DR

The gauge invariant Feynman rules presented in the pre-
ceding section do not permit a regularization by continua-
tion in the dimension D when AC(µ) is chosen compatible
with the trace condition (2). This can be proven as follows.
First we consider the Dirac algebra extended to D = 2n
(n ≥ 2, integer). In this case 2n–dimensional representa-
tions of the γ–algebra are well known [8]. A basis for the al-
gebra is given by the set of matrices 1, γ5 and the antisym-
metrized products γ[µ1...µp] associated with p–dimensional
subspaces of MD. We will split the SO(1, D − 1) vec-
tors (tensors) into 4–dimensional vectors pµ‖ = p̂µ (µ =
0, 1, 2, 3), in the physical subspace M4, and their orthog-
onal complements pµ⊥ = p̄µ (µ = 4, . . . , D − 1). If we
impose the trace condition (2) in the physical subspace
(see (11) above) we obtain the ’t Hooft–Veltman algebra
[5]:

AC(µ) =

{
0 ; µ = 0, 1, 2, 3

2γ̄µγ5 ; µ = 4, . . . , D − 1
(25)

with γ5 = i
4!εµνρσγ̂

µγ̂ν γ̂ργ̂σ. Here, it is important to no-
tice that AC(µ) is a matrix of rank ε̄ ≡ D−4. The matrix–
elements themselves are of order O(1). As a consequence
higher products of AC-terms are not of higher order in ε̄
for D → 4. This is the reason why the extra terms needed
to restore the Ward-Takahashi identities cannot be con-
sidered as perturbations. They affect the free part of the
Lagrangian! and hence the form of the fermion propaga-
tors, as shown above. The symmetry at the end can only
be there if the free and the interacting parts of the La-
grangian match appropriately.

We are now ready to reconsider the fermion propagator
(23). Using (25), we get for the scalar product (24)

K2 = k2 − k̄2 = k̂2 (26)

and thus

SF (k) =
k̂/+m

k̂2 −m2 + i0
(27)

takes its 4–dimensional form, independent of D! It is then
impossible to regularize fermion-loop integrals by contin-
uation in D. The crucial point is that the consistency
with the trace condition requires that in (24) the extra
term proportional to AC(k)2 like AC is a matrix of rank
ε̄ ≡ D − 4 and not a correction of order O(ε2) in the
ε–expansion!

The problem may be reconsidered in terms of the Γ–
algebra defined by (15), which may be associated to any
γ–algebra:

{Γµ, Γ ν} = 2gµν · 1 − 1
4
{AC(µ),AC(ν)} ,

{Γµ, γ5} = 0 . (28)

For any Γ–algebra in order to be closed, we must require

{Γµ, Γ ν} = 2Gµν · 1 (29)
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for some symmetric D ×D–matrix G, which satisfies

gµ
νG

νρ = Gµρ . (30)

The trace condition (4) must hold with the replacements

(γµ, gµν , AC(µ) �= 0) → (Γµ, Gµν , AC(µ) = 0) (31)

which implies
gµνG

µν = Gµ
µ = 4 . (32)

Assuming G to have block–diagonal form

G =

(
ĝ 0
0 ḡ

)
(33)

the condition (2) can be satisfied with a singular metric
G only:

ḡ = 0 , G = ĝ (34)

where ĝ must be the Minkowski metric. Thus, starting
from the ’t Hooft–Veltman scheme, we are lead to a di-
mensional reduction (DRED) scheme [10] by adding just
some terms in the Feynman rules which vanish in D = 4.

As a result, the Γ–form of the ’t Hooft–Veltman al-
gebra is identical to the 4–dimensional Dirac algebra. In
other words, using the ’t Hooft–Veltman algebra (in its
D–dimensional form) together with the chiral fields, which
are adapted to the gauge symmetry, “non-regularization”
of fermion–loops is implied. Again, a regularization can
only be obtained by giving up either the trace condition
(2) or gauge invariance.

This last statement, of course, is not terribly new.
What we have shown is that the Dirac algebra assum-
ing anticommuting γ5 on the one hand and the ’t Hooft–
Veltman algebra on the other hand are not really different,
since the latter can always be rewritten in the anticom-
muting Γ–form by means of the relations (15) and (16).
In any case, for theories involving γ5, “dimensional reg-
ularization” compatible with (4), does not provide well–
defined integrals for loops involving fermion lines. This has
been noticed by ’t Hooft and Veltman in their original pa-
per [5] where they state: “the usual ambiguity of choice of
integration variables is replaced in our formalism by the
ambiguity of location of γ5 in the trace”. Statements to
the contrary, frequently found in the literature, are mis-
leading. Usually, extra “prescriptions” about where to put
the γ5 in a particular calculation are proposed. These pre-
scriptions, however, do not resolve the problem of math-
ematical inconsistencies, i.e., they still require an explicit
check and the restoration of the Ward-Takahashi identi-
ties.

The use of chiral fields provides an unambiguous rule
for the proper location of the γ5–matrices before gener-
alization to D �= 4. Unfortunately, this has lead to the
“non-regularization” by dimensional continuation when
the D �= 4 trace condition (2) is imposed, which in turn
essentially implies the ’t Hooft–Veltman scheme.

If we violate gauge invariance by the naive application
of the ’t Hooft–Veltman prescription, we have to restore
the symmetry by imposing the relevant Ward–Takahashi

identities and fixing appropriate counter terms. But this
precisely amounts to including the extra AC(µ) terms
given in (18) and (19). Which in turn is nothing but an-
other way of utilizing the naive anticommuting γ5.

4 Conclusion for the practitioner

According to our considerations above we are left with two
possible strategies:

i) AC(µ) �= 0:
the chirally improved ’t Hooft–Veltman scheme

If we insist on the trace condition (2) the gauge invariance
must be manifestly broken in order to obtain the “pseudo
regularization” by dimensional continuation. Again we
start at the level of the chiral fields but must avoid the
non–regularization by treating the AC–terms in the free
part of the Lagrangian as interaction terms, i.e., we use
the standard D–dimensional Fermi propagator

SF (k) =
k/+m

k2 −m2 + i0
(35)

together with the chiral currents (18, 19) as our “chiral
Feynman rules”. Since AC(µ) �= 0, the choice of the Fermi
propagator (35) amounts to adding the symmetry break-
ing term

∆LSB =
1
2
ψ̄iAC(µ)γ5∂µψ = ψ̄iγ̄µ∂µψ (36)

to the Lagrangian. Besides the fact that this operator has
no 4–dimensional representation, it is not a higher order
term for D �= 4 as it would be necessary for treating it as
a counter-term (perturbation). Expanding ∆LSB pertur-
batively amounts to the assumption that AC(µ) = O(ε)
in the sense of matrix elements, which conflicts with (2).
As we have mentioned earlier, (2) requires AC(µ) to be
a matrix of rank ε̄ = D − 4 with matrix elements of or-
der O(1). A mathematically satisfactory way out of the
dilemma within the framework of DR is not possible as a
result of the existence of the ABJ–anomaly.

Our considerations show that “quasi gauge invariant”
Feynman rules may be obtained for non-anticommuting γ5
provided AC(µ) is treated as a perturbation i.e. AC(µ) =
O(ε). Examples are briefly considered in the Appendix.
Results turn out to be AC–independent in this case.
AC–invariance may be used as a helpful tool for check-
ing the gauge invariance of fermionic loop contributions
to amplitudes. Usually such checks are possible only by
explicit consideration of WT- and/or ST-identities. We
stress, once again, that any approach which treats the
AC–term as a perturbation conflicts with the trace condi-
tion (2) at some point. Ignoring this point leads to “stan-
dard” confusions, frequently appearing in the literature.
While working with the ’t Hooft–Veltman prescription in
the standard form requires the subsequent check of the
Ward-Takahashi identities,after utilizing the chiral version
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Fig. 1. The VVA triangle diagrams

of the Feynman rules we may restrict ourselves to check
the hard anomaly diagrams.

Since amplitudes exhibiting spurious anomalies only
may be chiralized either by our chirally improved Feyn-
man rules or by imposing the Ward-Takahashi identities
which makes them AC–invariant we obviously may di-
rectly choose the scheme AC(µ) = 0, which is our second
and preferred option:

ii) AC(µ) = 0: the quasi self-chiral scheme

From a practical point of view an acceptable computa-
tional scheme should avoid spurious anomalies in the first
place. This is possible only if the trace condition (2) is
given up. Gauge invariance can be preserved then by us-
ing an anticommuting γ5. This has been noticed in [7] (see
also [25,26,28,39]).

We observe that taking chiral fields seriously on a for-
mal level, the only consistent way to avoid the above
non-regularization is the simple one: use anticommuting
γ5 from the very beginning, i.e., choose the NDR alge-
bra (1). Since Γµ ≡ γµ in this case we do not get the
non-regularization of the fermion propagators. The ABJ–
anomaly must be considered separately as we are going to
discuss now2.

In the gauge invariant approach, closed fermion loops
exhibiting γ5 odd traces and hard anomalies, cannot be
obtained by dimensional continuation, merely, γ5 odd
traces are to be considered as intrinsically 4-dimensional
quantities. Since charge conjugation properties and the re-
lated Bose symmetry are not automatically satisfied one
has to account left- and right-circulation of the fermions in
closed loops separately. In any case Adler’s approach [40]
can be utilized to resolve the remaining ambiguities. For
this purpose, let us briefly consider the ABJ–anomaly [23]
exhibited by the current correlator < 0|T{V µ(x1)V ν(x2)
Aλ(y)}|0 > of two vector currents and an axial–vector
current. The one–loop diagrams are shown in Fig. 1.

In D = 4, working as usual in momentum space, we
may perform a covariant decomposition of the third rank

2 The terminology introduced in [9,13] which calls a scheme
“consistent” if it respects the trace condition (2) and “inconsis-
tent” otherwise is definitely misleading by the considerations
presented in this paper. Since we cannot satisfy the Ward-
Takahashi identities and the trace condition simultaneously we
have the choice which one we want to consider more fundamen-
tal. Something has to be restored at the end by hand in any
case. To put into place the model independent ABJ–anomalies,
is by far simpler, than restoring the chiral symmetry which is
broken by non–NDR schemes

pseudotensor which depends on the two independent mo-
menta p1 and p2:

Aµνλ(p1, p2) = εµνλα (p1α A1 + p2α A2)

+ εµλαβ p1αp2β (pν1 A3 + pν2 A4)

+ ενλαβ p1αp2β (pµ1 A5 + pµ2 A6)

+ εµναβ p1αp2β

(
pλ1 A7 + pλ2 A8

)
(37)

where the amplitudes Ai are Lorentz scalars. We now im-
pose

– Bose symmetry (i.e. consider the sum of the two dia-
grams of Fig. 1):

Aµνλ(p1, p2) = Aνµλ(p2, p1)

which implies

A1(p1, p2) = −A2(p2, p1), A3(p1, p2) = −A6(p2, p1),
A4(p1, p2) = −A5(p2, p1), A7(p1, p2) = +A8(p2, p1).

(38)

– Vector current conservation:

p1µA
µνλ = p2νA

µνλ = 0

which implies

A1 = − (p22 A4 + p1p2 A3
)

A2 = − (p21 A5 + p1p2 A6
)
. (39)

We thus find that the amplitudes A1 and A2 are deter-
mined uniquely in terms of theAi, i = 3, . . . , 6. The crucial
observation, made by Adler long time ago [40], is that the
amplitudes Ai, i = 3, . . . , 8, have dimension deff = 1−3 =
−2 and hence are represented by convergent integrals. In
contrast, Ai, i = 1, 2, have dimension deff = 1 − 1 = 0
(logarithmically divergent) and thus require regularization
and renormalization. However, imposing Bose symmetry
and vector current conservation uniquely determines the
two regularization/renormalization dependent amplitudes
in terms of the other convergent and hence unambiguous
ones, i.e., the result is unique without need to refer to
a specific renormalization scheme. The divergence of the
axial–vector current takes the form

−(p1 + p2)λA
µνλ = 2mRµν + 8π2p1αp2βε

αβµν �= 0

where the first term on the r.h.s. is the normal term which
vanishes for vanishing fermion mass m while the second
term is the mass independent anomaly. Formal axial–
vector current conservation in the limit of vanishing
fermion mass would require

A1 −A2 − (p21 + p1p2)A7 − (p22 + p1p2)A8 = 0 ?

with A1 and A2 fixed already by vector current conserva-
tion, this expression as we know does not vanish but yields
the famous axial–vector current anomaly. All true anoma-
lies, i.e.,quantum effects like the triangle anomaly which
cannot be removed by adding a corresponding counter
term to the Lagrangian, are well known to be related to
the triangle diagram. Besides the triangle diagram itself
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they appear by tensor reduction from one–loop box and
pentagon diagrams and diagrams which contain the one–
loop anomalous graphs as subgraphs.

The Adler–Bardeen non-renormalization theorem [37]
of the one–loop anomalies implies that matters are under
control provided Bose symmetry and vector current con-
servation are imposed, if necessary by hand. In DR it has
been reconsidered in [38,39]. Last but not least we must
have the anomaly cancelation, possible by virtue of the
quark lepton duality, in order to have the SM renormaliz-
able [24].

Summary: we have shown that different γ5–schemes
may be related by adding suitable terms in the D–dimen-
sional Lagrangian which vanish at D = 4. In any scheme
we can mimic chiral fields by the appropriate choice of the
Feynman rules. We consider this to be crucial since the
physical SM derives via a Higgs mechanism from a sym-
metric phase which exhibits chiral fermions only. The cor-
responding “chiral completion” (see (18,19)) of the Feyn-
man rules cannot make a consistent scheme inconsistent or
vice versa. Avoidable (often called “spurious”) anomalies
are then absent. Our arguments strongly support the ap-
plication of the NDR scheme (1), i.e., the D–dimensional
γ–algebra together with a strictly anticommuting γ5, to-
gether with the simple 4–dimensional treatment of the
hard anomalies discussed above. The NDR is easily imple-
mented into computer codes and is by far the most con-
venient and efficient approach in calculations of radiative
corrections. Removable anomalies are avoided and hence a
tedious procedure of restoration of WT- and ST-identities
is not needed.

The rules advocated here have been utilized success-
fully in the last twenty years by many authors at the
one– and the two–loop level and beyond. Most SM cal-
culations of higher order effects adopted the NDR scheme
without encountering any inconsistencies. Of course, the
NDR scheme has been advocated by several authors [7,11,
25,26,28,39] (see also [30]) in the past. I hope the present
paper contributes to clarify part of the ongoing contro-
versy.
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Appendix:
Calculations with AC(µ) �= 0 in the SM:
Two examples

We [41] have verified explicitly that all spurious anomalies
disappear from fermion propagators and fermion form fac-
tors at one-loop order for the case where we use Feynman
rules as proposed in Sec. 4 in case AC(µ) �= 0. As ex-
plained earlier, in order to avoid the “non-regularization”

of fermion lines, we must treat AC as a perturbation
AC(µ) = O(ε) and work to linear order in AC. All calcu-
lations have been performed in the ’t Hooft gauge with an
arbitrary gauge parameter ξ, which makes possible direct
analytical checks of gauge invariance. We only summarize
the structure of the results.

The irreducible self-energy Σ(k) we obtained has the
following form

Σ(k) =
(
k/−m− 1

2
AC(k)γ5

)
A+

1
2

[k/, γ5]B+mC . (40)

This implies that the mass- and wave-function renormal-
ization are completely AC–independent:

δm = −mc0 ,
√
Z2 = 1 − 1

2
a0 − 1

2
b0γ5 . (41)

Here the wave-function renormalization constant is given
by the matrix√

Z2 =
√
ZR Π+ +

√
ZL Π− (42)

where
√
ZR and

√
ZL are the independent wave–function

renormalizations of the right–handed and left–handed
fields, respectively. Thus the renormalized self–energy
reads

Σr(k) =
(
k/−m− 1

2
AC(k)γ5

)
(A− a0)

+
1
2

[k/, γ5] (B − b0) +m (C − c0) (43)

with A− a0, B − b0 and C − c0 finite, and hence

Σr(k) = (k/−m) (A−a0)+k/γ5 (B−b0)+m(C−c0)+O(ε)
(44)

By contrast, using standard Feynman rules, we obtain

Σ(k) = (k/−m) A+
1
2

[k/, γ5]B +mC (45)

+ AC(k)γ5 D + [k/,AC(γ)] E + [k/,AC(γ)] γ5 F

for the bare self-energy. In this case it is not possible to
perform the renormalization in the standard way without
imposing the Ward-Takahashi identities first, which must
lead to the form (40).

Similar results can be found for form-factors. The fol-
lowing applies to the �̄�γ and �̄�Z vertices. The general
form of the irreducible vertices reads

Πµ(p1, p2) =
(
γµ −m− 1

2
AC(µ)γ5

)
F1

+
1
2

[γµ, γ5] F2 + pµ1F3 + pµ2F4 . (46)

We notice that the only surviving AC–term is AC(µ)γ5
which appears in the canonical from (15) as in the Born
term. Thus the vertex renormalization can be performed
in an AC–independent way, i.e., the renormalized vertex
is given by

Πµ
r (p1, p2) =

(
γµ −m− 1

2
AC(µ)γ5

)
(F1 − c1)

+
1
2

[γµ, γ5] (F2 − c2) + pµ1F3 + pµ2F4 (47)
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with F1 − c1, F2 − c2, F3 and F4 finite. Hence, we have

Πµ
r (p1, p2) = γµ (F1 − c1) + γµγ5 (F2 − c2)

+pµ1F3 + pµ2F4 +O(ε) (48)

independent of any AC–term. In contrast, by applying
standard Feynman rules, we find additional terms of the
form AC(µ)γ5, [γµ,AC(γ)] and {γµ,AC(γ)}γ5 which can-
not be removed by renormalization, unless we impose the
Ward-Takahashi identities first. In the chiral scheme we
obtain gauge invariant form factors directly without im-
posing Ward-Takahashi identities by hand. Calculations
in this “chiral” scheme in fact look very similar to the
ones performed with anticommuting γ5.

As a result of these findings we decided to work with an
anti-commuting γ5 henceforth, first at the one–loop level
[42,43], later at the two–loop level [44–46]. In most of these
calculations we worked in the ’t Hooft gauge with a free
gauge parameter which allowed us to check explicitly the
gauge invariance of on-shell matrix elements.
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